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ABSTRACT

.Path Planning is an intricate part of the navigation

function of any vehicle traveling between two points in

space. In an autonomous underwater vehicle, a trajectory

may be planned between two points using the optimization

techniques of ADS (Advanced Design Synthesis) coupled to a

motion analysis routine, DSL (Dynamic Simulation Language).

The problem is posed as a two-point-boundary-value problem

with initial states and desired final states known, as well

as a final time specified. The objective function is

minimized in the form of a quadratic regulator for the

purpose of conserving the vehicles energy supply. An

obstacle in the dive plane (X-Z plane) is introduced and

successfully avoided using the constrained optimization

technique. The use of optimization is proven as a feasible

method for successfully planning the trajectories of

underwater vehicles.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases

of interest. While every effort has been made, within the

time available, to ensure that the programs are free of

computational and logic errors, they cannot be considered

validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

Path planning is the function provided by an intelligent

system which determines a safe, collision free trajectory of

travel between two points, a start point and a target point,

for a specific time lapse. This has been performed

successfully for a number of land vehicles by many different

techniques [Refs.1-3]. Several classes of techniques

available today include graphical search methods (Refs.4-8],

artificial potential field methods (Refs. 9-13] and optimal

control theory (Refs. 14,15]. The approach taken in the

present work falls in the optimal control theory class.

Here, a single-valued penalty function was used to evaluate

a path between the two positions. The "best" path was then

found by minimizing the penalty. The mathematics of this

approach was fairly intense, but the advantage is that

optimization in space and time were accomplished

simultaneously.
-,.

Path planning is an open loop control problem that

optimizes the control vector U to produce a best state

trajectory, X, based on the penalty function, which is also .5.

referred to as the objective function.

This baseline study of optimal control theory as applied

to path planning was directed toward being utilized in an

Autonomous Underwater Vehicle (AUV) testbed at the Naval

1



Postgraduate School. At the time of this writing an AUV was

being designed to operate in the ocean environment

untethered from any command structure or man-in-the-loop

system. To operate on its own the AUV must have, in

addition to many other self sustaining systems, a system or

means to plan its track from the present position to a

target position some distance away and at some specified

time in the future. Figure 1.1 shows the states that are of

major concern when dealing with motion in the vertical

plane. The x-state is the distance the vehicle travels in

the horizontal direction. The z-state is the distance

p.

L4.

0 4 6 8 10 12 14

X-STATE

Figure 1.1 Dive Plane State Relationship
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the vehicle travels vertically. The theta-state is the

pitch angle of the vehicle, in radians. As mentioned

earlier, the objective was to have this path be safe,

collision free and energy efficient. Energy utilization was

of key importance since the power source was assumed to be

limited to a finite source onboard. The path planner was

assumed to operate in a large area transit mode where the

speed would be moderate and the obstacle environment sparse.

The Automatic Design Synthesis (ADS) FORTRAN program

[Ref. 16] was utilized to accomplish the optimization

when coupled to the Dynamic Simulation Language (DSL)

[Ref.17]. The coupled package was referred to by the

acronym ADSL. The IBM 3033 mainframe computer system

provided the environment to run the programs. ADS provided

an options package that allowed for the utilization of all

known methods available to do numerical optimization.

DSL provided selection of integration methods necessary

to integrate the equations of motion (state equation) and

determine the "best" path. The amount of time necessary to

compute this path was also a factor worthy of consideration

as it was desired to have the path planner perform at, or

near, real time. It was assumed that these algorithms would

later be hard-wired into a system for use in an underwater

vehicle.

The approach taken was to initially utilize ADSL on an

unconstrained nonlinear SISO (single input single output)

3
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open loop minimization problem. The problem was chosen for

its similarity to the AUV nonlinear dynamics structure.

This problem allowed for initial studies on effectiveness of

integrators, time interval step sizes, strategy and

optimizers. This procedure was then applied to a simplified

linear model of dive plane motion with a corresponding

multiple input multiple output (MIMO) model. Comparison of

results with the full-scale nonlinear model developed by Lt.

Boncal followed [Ref.18]. The "best" path was determined in

all cases.
%
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II. SISO MINIMIZATION PROBLEM

A. THE PROBLEM

The SISO minimization problem was based on the

continuous time problem of example 10.2-6 of Sage

[Ref.19:p.313] (see Appendix A). This problem was chosen

because of its similarity to the structure of the nonlinear

dynamics of an underwater vehicle which will be discussed in

the next part of this study. Sage arrived at the solution

by using a continuous time analytical method and a

gradient-in-function-space technique. Optimization was

reached through an analytical equation that gave the results

plotted in Figure 2.1 for the control variable, and Figure

2.2 for the state variable.

In the present work a discrete time solution was chosen

that gave a set of single-valued control inputs evenly

distributed over a specified number of delta-time steps.

The optimum open loop control vector therefore appeared as a

stepped function in time, which well mimics a computer-based

controller output.

B. OBJECTIVE FUNCTION

The objective function was a one dimensional quadratic

performance index of the form:

-V.T

T
J = f (X(t)TQX(t) + U(t)TRU(t))dt (2-1)

0
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where:

U = the control variable; and

X = the output state.

In actuality the computer saw the objective function as:

N
=2 2J (X - U.) LT (2-2)1 1

where:

N = the number of discrete time intervals, each
of which corresponds to a single design
variable (DV) in the control variable history.

Figure 2.3 shows the relationship between the design

variables (DV), the time intervals, the discrete control

variables (also DV) and the continuous control signal.

C. DESIGN VARIABLES

It was desired to chose a number of DV's in U that would

yield a close approximation of the continuous time solution.

Table 1 shows the mainframe computer run times and error

data for cases where 100, 50, 20, and 10 time intervals were

established between start time and finish time (0 to 1.0

sec). The rectangular integration method with .005 second

step size was used for all cases.

Based on the extended virtual machine time (VM) on the

NPS IBM mainframe computer for the 100 and 50 time interval

7
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 1.0

TIME

Figure 2.3 Discrete vs. Continuous Controls

TABLE 1

DESIGN VARIABLE COMPARISON

Number X-State
of Objec- X-State Final

Design Run Objec- tive Final Value

4.Variable Time tive Error Value Error

SAGE - 4.4859 - 0.83327

100 8.38 4.4930 .16% 0.84347 1.2%

50 4.96 4.4934 .17% 0.84339 1.2%

20 3.30 4.4920 .14% 0.83680 .42%

10 2.46 4.4917 .13% 0.83385 .07%

8
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problems and the fact that the results do not show any

improvement in the solution, these two intervals were not

considered as viable solutions. The 20 and 10 interval

results were further analyzed to determine the number of

design variables and also the recommended time step size to

be used during the integration of both the state X and

objective function J. First, however, the type of

integration method needed to be determined.

D. INTEGRATION METHOD

DSL (Dynamic Simulation Language) has a variety of

integrators to use for any type of problem. Table 2 gives

the available methods in three groups.

TABLE 2

DSL INTEGRATION METHODS

Fixed Step Methods Order

RECT Rectangular 0

TRAPZ Trapezoidal 1

SIMP Simpson's 3

RKSFX Runge-Kutta 4

Variable-step Methods

RKS Runge-Kutta 4

RK5 Runge-Kutta 5

Variable-step, variable-order Methods

ADAMS Adams-Moulton 1-12

STIFF Gear, full Jacobian 1-5

BSTIFF Gear, Banded Jacobian 1-5

9
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The fixed step methods are easily controlled using the

DELT parameter that tells DSL the delta time step size to

use in the simulation. The rectangular method is the

simplest, and the Runge-Kutta the more complex of the fixed

step integration methods. Since the design variables were

actually based on fixed time increments, the variable step

methods were more difficult to utilize. However, with the

additional DSL parameters of DELMAX and DELMIN these methods

were also utilized to conduct the simulation comparisons.

Comparisons using the 10 and 20 time intervals were made

with the RECT, RKSFX, RK5, and ADAMS methods.

Results found in Table 3 give the run times and

accuracies of both the objective function and the value of

the X state at 1.0 second, the final time. The results

show that the fixed step rectangular integration method was

the overall most accurate method when considering both

objective function and final X state after the 1.0 second

interval. Also, as could be expected, the run times

increased with complexity of the integration routines. To

ensure that the variable step size methods covered each

design variable time increment, the DELMAX and DELMIN values

were set equal to the DELT parameter. The accuracies of the

objective function were very good for the higher order

integration methods; however, their accuracies for the final

X state were worse than for the simple rectangular method.

10
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When run time was considered as well, the "best for

least" concept was used and the rectangular integration

routine was selected as the best overall choice.

E. INTEGRATION STEP SIZE

The integration algorithms required a finite amount of

time to run depending on step size. As the step size

decreased, the time to complete the integration of the

objective and state equations increased. Also, the accuracy

of the integration result increased to a point then remained

relatively constant. Table 4 provides tabulated data on

integration step size, time requirements and accuracies for

the two feasible time interval solutions.

TABLE 4

INTEGRATION RESULTS

Time 20 Error 10 Error Sage
Category Intervals DV's DV's Result

Run .001 11.38 - 7.61 -

.005 3.30 - 2.46 -

Time .01 2.21 - 1.77 -

(Sec) .05 1.34 - 1.21 -

.001 4.4877 .04 4.4874 .03 4.4859
Objective .005 4.4920 .14 4.4917 .13

.01 4.4975 .26 4.4972 .25
Value .05 4.5463 1.3 4.5463 1.3

.001 .84476 1.4 .84181 1.02 .83327
Final .005 .83680 .42 .83385 .07

X .01 .82678 .78 .82383 1.13
State .05 .73755 11.5 .73648 11.6

12
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Results revealed that for 10 time intervals the best

performance was found at the 0.005 second integration time

step size. The run time was approximately equivalent to the

20 interval 0.01 second integration step size. The key to

performance was the accuracy of the output state with

respect to time. Figure 2.4 superimposes the Sage solution

for the X state with the X state for the 20 interval 0.005

step size and the 10 interval 0.005 step size. They are all

very close. However, the control prediction becomes the

discriminating factor. Here, the 10 interval 0.005 step

size shown in Figure 2.5 is the best choice for duplicating

the control variable.

Therefore the overall "best for least" result was found

to be the 10 time intervals, 0.005 second integration step

size in conjunction with the rectangular integration

algorithm.

F. OPTIMIZATION

The ADS (Advanced Design Synthesis) program provided the

means to combine a wide variety of optimization concepts so

that the best combination could be selected to solve the

problem. The concepts were divided into three basic levels
S"

for solving the type of minimization problem described in

Reference 20, page 1. These three levels were the strategy

level, the optimizer level and the one dimensional search

level. Table 5 lists the levels and the algorithms

available. Reference 20, page 5 provides a matrix which

13
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TABLE 5-1

ADS OPTIONS ..

Strategy (ISRRAT)

0 - None

1 - SUMT, Exterior Penalty Function

2 - SUMT, Linear Extended Interior

3 - SUMT, Quadratic Extended Interior

4 - Cubic Extended Interior

5 - Augmented Lagrange Multiplier Method

6 - Sequential Linear Programming

7 - Method of Centers

8 - Sequential Quadratic Programming

9 - Sequential Convex Programming

Optimizer (IOPT)

1 - Fletcher-Reeves

2 - Davidon-Fletcher-Powell (DFP)

3 - Broydon-Fletcher-Golfarb-Shanno (BFGS)

4 - Method of Feasible Directions

5 - Modified Method of Feasible Directions

One dimensional Search (IONED)

1 - Golden Section Method

2 - Golden Section and Polynomial

3 - Polynomial Interpolation, bounded

4 - Polynomial Extrapolation

5 -Golden Section Method

16
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TABLE 5 (CONTINUED)

6 - Golden Section and Polynomial

7 - Polynomial Interpolation, bounded

8 - Polynomial Extrapolation

gives the meaningful combinations of algorithms to be used

for various types of problems. In summary, the two major

types of problems are classified as constrained or

unconstrained minimization. The Sage problem was

unconstrained so strategies 1 through 5, optimizers 1

through 3 and one dimensional search methods 1 through 4 p
were all possible selections. For a constrained problem, as

for the AUV model, strategies 6 through 9, optimizers 4 and

5 and one dimensional search methods 5 through 8 were

possible. If the strategy is eliminated, the solution

process starts with the optimizer.

Olson [Ref.21:pp. 27-32] summarized the options

available and made further reference to Vanderplaats

[Ref.22] for additional details concerning these methods and

algorithms. The material will not be repeated here.

The strategy, as stated earlier, was optional for all

problems; however, an optimizer and one dimensional search

algorithm were required.

In determining the combination of strategy, optimizer

and one dimensional search method that was the most accurate

for solving the Sage unconstrained problem, all the possible

17



combinations were run. It was quickly determined that the

strategy option when invoked caused the execution time and

the number of calls to ADS to increase. The solutions were

not as accurate as those without a strategy invoked. It was

determined that the best optimizer proved to be the

Fletcher-Reeves conjugate direction method (IOPT = 1). This

method was a simple modification to the first-order method

of steepest descent. It involved gradient information

normally supplied by using finite difference computations

[Ref.22:p. 88). The conjugate direction method approach

picked search directions that were conjugate by definition

of the search direction equation:

X 1 = X 0
- F(x 0 ) (2-3)

where:

X1 = new design variable vector

X0 = previous design variable vector

a = scalar parameter

-F(X O ) = gradient of F(XO). [Ref. 22:p. 74]

The one dimensional search algorithm that provided the

best results with the optimizer was the method of polynomial

extrapolation (IONED = 4). The graphical results of Figures

-J 2.4 and 2.5 were those using the above optimizer and one

dimensional search combination.

18
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III. PATH OPTIMIZATION FOR A LINEAR MIMO PLANT

A. MIMO PLANT FORMULATION

With the optimization method tested on a SISO

unconstrained problem, and realizing computation times were

satisfactory for a near real time solution, the method was

applied to a linear MIMO plant. Specifically, a linearized

model of an under-water vehicle restricted to dive plane

motion was developed. The development followed the

procedures specified in [Ref. 23: p. 476] with the

assumptions that:

i) the vehicle equilibrium condition was along a

straight line path;

ii) it traveled at constant speed; k

iii) it moved in a fixed horizontal direction, and

iv) it had xg = 0. (xg is the distance the body
fixed coordinate system is from the actual
center of gravity of the vehicle in the x-
direction.)

The standard six-degree-of-freedom dynamic equations of

motion of a sub1-wacine developed by Gertler and Hagen

[Ref.24] and revised by Feldman [Ref.25] were the nonlinear

equations that were linearized. Due to the above assumption

for motion restricted to the vertical plane, the axial force

equation (X) was decoupled from the pitch moment equation

(M) and the normal force equation (Z). The equations

simplify to the following:

19

.-.-% .j% - ..'. ..-..- .-... -.-.. ".% j.'. ,' % - % -.. . . . . . . .. . . . . . . .,.. . . . . . . . . . . . . . . . . .% , "



-I g I ,! ! I I I I i I

-Z W+(M -Z.)w -(Z +n )q -Z~q =Z DS +Z DB (3-1)
W W W q ds dB

-M W - I- ., 1 .1 1 1 1 1

-M'w -Mw -M-q +(I -M-)q -M & =MDS +McDB (3-2)
w w q y q e MdS MdB

The additional coupling equation linking the forward motion

speed to the problem is:

'- u e (3-3)

where u' is a constant forward speed. The model is
0

completely nondimensionalized by the vehicle's length of

approximately 17 feet, and a velocity of six feet per

second. The equations were modelled in state space form

with the four states being:

thetadot = rate of change of pitch

theta = pitch angle in radians

w = rate of change of depth

z = depth (positive going down).

A DSL simulation program (STSPACE3 DSL in Appendix B)

verified that the model was working properly. The coupling

of ADS and DSL followed with path optimization as the goal.

The vehicle from which this model is derived has coupled

stern and bow planes. That is, given a stern plane

deflection, the bow planes deflect opposite in direction

with a given proportionality constant. This aids in

maneuvering the vehicle. With this coupling, the actual

20

55



-~~Y Y 4-

control matrix was a scalar, associated with the stern plane

deflection only. Controllability was checked and the plant

was verified as controllable. However, in the following

discussion, the planes were decoupled so that two separate.S

control inputs were optimized over the specified length of -

time to perform any dive maneuver. This was done for

additional controllability.

B. DEFINING THE PROBLEM

When an underwater vehicle travels from one position to

another, the path upon which it traverses is a smooth

continuous path that does not have discontinuities. If the

vehicle is stable, the trajectory is predictable and it may

be expected that a path planner using optimization

techniques could find the "best" path from the start

position to the end. Further, while finding the best path,

all stationary obstacles must be avoided, if feasible.

The sample problem was formulated for a maneuver in the

vertical plane, a one unit depth change (17.425 feet) in 20

seconds (t' = 7.0), with the vehicle at an initial forward

velocity of six feet per second (one unit of nondimensional

velocity), without obstacles. The initial conditions were

associated with the vehicle traveling at constant horizontal

motion at an arbitrary depth (zero in the figures). At

time equal to zero (t' = 0.0) the coordinate system was

positioned at the vehicles center of gravity. The final

state was to occur at time equal to 20 seconds (t' = 7.0)

21

.... -.**%* - .o .. , .- ..--. ----'- *.. . - ** ,.". ." ,"..? N . .. . .: .- ;v -



with Z = 17.425, theta = 0.0, and the control surfaces at

their equilibrium positions. In other words, the vehicle

was to be at the desired end depth at zero pitch and with

control surfaces at the neutral position so that immediately

after 20 seconds the vehicle would continue to travel along

the desired depth. Before discussing the optimization

techniques required to solve such a problem as depth change,

the objective function and approach taken will be discussed.

C. THE OBJECTIVE FUNCTION

For the linear plant model given by a system of

equations in the form

=A x + B u , (3-4)

the desired function to minimize is an error function of

the form

T

f T [xf(t) - x(t)]TQ-xf(t) x(t)]dt (3-5)

In addition, since power consumption is paramount when

dealing with self contained underwater vehicles, a

minimization of the control energy should be included. The

following equation forms a power penalty on the control

7, vector u:

T

f u(t) R u(t)]dt (3-6)

a 2.2
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So, the combined objective function that should be minimized

is:

Tf {[xf(t)-x(t)1TQ[xf(t)-x(t)] + u(t)TRu(t) }dt (3-7) .
0

This is the quadratic performance index presented by Ogata.

[Ref.26:p.753] -..2

For a depth change maneuver all states except the

position states should be zero at the end state. In a

strict X-Z plane maneuver with the X state decoupled, the

final Z position will have a value other than zero (say, z) ;
f

hence, the 'If" subscripts in the equation above.

D. THE APPROACH

Four combinations of end time treatments are thus

possible to solve this two point boundary value problem:

1) Minimize the quadratic performance index by gain
adjustment without end constraints.

2) Use the ADS defined end constraints and minimize the
objective.

3) Combine ADS defined end constraints with penalty
functions added to the objective.

4) Minimize the objective combined with penalty I
functions on the desired terminal conditions,
without ADS end constraints.

The results of each combination is presented in the V.

following discussion and graphically in the accompanying

figures. A discussion of the accuracy and timing will

follow at the end of the chapter. All methods required the

2
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use of side constraints to limit the bow and stern plane

deflections.

1. Side Constraints

After considering the actual movement of an

underwater vehicle through the water, it was realized that

several restrictions needed to be placed on the vehicles'

maneuvering surfaces. The maximum stern plane deflection

was limited to no more than a 10 degrees up or down angle

from the equilibrium position, and the bow planes were

limited to approximately 15 degrees up and down angle. To

effect such a restriction in ADS, the side constraint

approach must be invoked. In Vanderplaats' formulation of

the problem for the ADS package, the side constraints are

the upper and lower bounds of the design variables to be

optimized [Ref.20]. They are identified as VLB, VUB

respectively in the programs. This is an advantage to a

constrained optimization problem because it limits the

search area in which to minimize the objective function.

This kind of constraint can be bumped up against and become

active, which means that the constraint value is in effect

for a specific design variable. If all of the side

constraints are active, then there is a good possibility

that the true minimum has not been reached as the design

variables have most likely hit the constraint before the

gradients had zeroed (found their minimum). If the side

A2
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constraints are active then the problem may need to be

redefined within the limits of the side constraints.

2. Ouadratic Performance Index Weightinp Alone

The quadratic performance index (Eq. 3-7) was the

objective function that ADS minimized using the

unconstrained minimization techinque concluded from the

previous work in Chapter II. The method, repeated here for

the reader, was the Fletcher-Reeves optimizer (IOPT = 1) and

the Polynomial extrapolation one dimensional search method

(IONED = 4).

The run times were favorable at less than four

seconds for the weighting matrix determined "best." It was

observed that as weighting was added to improve the depth

accuracy the pitch accuracy worsened, and vice versa. As a

result of this, the weighting matrix that was determined to

produce the "best" result was the identity matrix. The

"best" result produced a five percent difference between the

desired depth and the actual depth. The pitch angle,

however, ended up short by over six degrees although it was

falling off toward zero from its maximum deflection.

The results indicate, and are verified by another

deeper depth change for the same terminal time, that

although depth can be achieved relatively accurately the

additional desired end state of zero pitch angle was not

achievable. Figures 3.1 and 3.2 present the results of two

different depth changes using the same gain matrix

25
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determined for the first depth change (the deeper depth).

The accuracy of the terminal depth, in general, increased

with an increase in size of the depth change.

The same depth change was then given twice as much

time to get to the desired depth to test the adequacy of the

weighting matrix to varying dive durations. Figures 3.3 and

3.4 show the results of these runs. The figures show that

dept, was increasing at the terminal time and pitch angle

was falling off, but at an extremely slow rate. Figures 3.1

throu4a 3.4 illustrate that the "best" weighting was a

function of the specific dive ordered, in the unconstrained

end time cases. Clearly the two point boundary value

problem could not be strictly enforced using this approach

alone. It was obvious that something was needed to "drive"

the solution to the desired terminal end states at the

desired end time.

3. ADS End State Constraints

The choice of end constraint types available in ADS

are found in the definition of the vector, IDG. IDG

contains parameters that must be specified in the call to

ADS and it specifies the type of each constraint used in the

problem. Table 6 lists the available types of constraints

handled by ADS (Ref.20:p. 11). Further investigation

'revealed that the best method to satisfy the end condition

constraints was to use two ADS constraints defined as

nonlinear equality types (IDG = -1) for each terminal end

28
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TABLE 6

CONSTRAINT TYPES IN ADS

1. Linear equality (IDG(I) = -2)

2. Nonlinear equality (IDG(I) = -1)

3. Nonlinear inequality (IDG(I) = 0 or 1)

4. Linear inequality (IDG(I) = 2)

condition specified; the constraint and its negative. For

example, a depth maneuver to an arbitrary depth of 50 feet

required two end constraints to be written. ADS requires

one of these to be entered via the following inequality:

G(l) < Z - 50. (3-8)

Here, ADS was told to recognize the equality via IDG = -1.

Thus when z is greater than 50 feet, this condition is not

satisfied and it does penalize the optimization. Similarly,

introducing the negative of this constraint,

G(2) < 50 - Z (3-9)

enforces that Z must be less than or equal to 50 feet. ADS

attempts to satisfy both constraints on Z by forcing the

value of Z to 50 feet. A similar method was used to apply

terminal constraints on all the final states.
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in addition to the constraint relationships, the

optimization algorithm had to be changed in order to carry

out a constrained minimization problem. ::t was necessary to

conduct a study of the effects on accuracy and run time, as

well as a study on which optimization algorithm was best

suited to this problem.

The ADS choices for such a problem as this were

(refer to Table 5) the 047, 057, 657, 533, and 133 cptions.

Table 7 presents the results of running this ADS constrained

terminal condition problem using each of the five options.

By invoking the use of a strategy option, the run time

increased a minimum of 66 percent over the shortest runtime.

The "best" method, considering both accuracy and runtime,

was the 057 option. This was used in all the remaining ADS

constrained cases.

Solving the terminal constrained problem using the

057 option did require some weighting of the constraints in

crder to produce the "best" accuracy and run time. The

weighting of the constraints was determined to be 0.5 for

the two depth constraints and 10.0 for the two pitch

constraints. When these weights were applied to a deeper

depth maneuver, the final depth was approximately six inches

from the desired depth. The pitch angle was also small,

less than 0.02 degrees. Figures 3.5 and 3.6 present the

results graphically for both depth and pitch, and for

both depth changes. The results illustrate the versatility
'
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of the ADS constraints to handle the typical range of depth

changes without changing the weighting factors either on the

constraints or within the objective function.

4. ADS and Penalty Function Combinations

Another method to enforce terminal conditions is by

creating penalty functions and adding them to the original

objective function [Ref. 19:p. 315]. Given the terminal

conditions for this problem, the penalty function for depth

and pitch respectively are, (ORDERED DEPTH - Z) squared and

(PITCH) squared. Two cases were considered, the first case

was an ADS constraint on pitch and the penalty function on

depth. The second was an ADS constraint on depth and a

penalty function on pitch.

a. ADS Constraint on Pitch and Penalty on Depth

This first case required both the pitch

constraint and the depth penalty function to be weighted

close to a thousand in order to achieve satisfactory

accuracy for the 17 foot dive maneuver. Figures 3.7 and 3.8

illustrate the trajectories and pitch performance of the two

dives discussed. Weighting again appeared to be a function

of the magnitude of the depth change maneuver using this

combination to enforce the terminal conditions.

b. ADS Constraint on Depth and Penalty on Pitch

Reversing the roles of depth and pitch terminal

constraints resulted in much improved accuracies and

response then the previously discussed method. With the ADS

36
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depth constraints weighted at unity and the pitch penalty

function weighted at 70.0 for the 17 foot dive, the depth

was perfectly satisfied and the pitch angle was extremely 1
accurate. The performance of this combination when applied

to the 100 feet depth change maneuver was considered

acceptable. Weighting was not a function of the magnitude

of the depth change. Figures 3.9 and 3.10 graphically

present the results. 
%

5. Unconstrained Minimization UsinQ Both Penalties

The final minimization method studied went back to

using the unconstrained minimization technique and applied

both of the terminal conditions as penalties on the

objective function. Depth and pitch terminal conditions

were put in penalty functions previously described and added

external to the integral of the original objective function. I

No ADS defined constraints were used and ADS optimization

combination 014 was applied as before. This method proved

to be ill-fated for this objective function. Increased 17
weighting on the penalties drove the answer to zero and the

"best" weighting proved to be the identity matrix. However,

at this weighting, the depth achieved was a third of the D

ordered depth but the pitch was acceptable at 0.0713
'.

degrees. For these reasons the data is not displayed

graphically and this method was not further analyzed.
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6. Timing and Accuracy

Thus, only three of the methods were compared to

choose the method best suited for this problem and the

obstacle avoidance situation discussed in the next

chapter. The three methods were: ADS defined constraints

only, ADS defined constraint on pitch and penalty on depth

and ADS constraint on depth and penalty on pitch. The

results are compiled in Table 8.

The timing criteria together with desirable accuracy

caused the "ADS constraints only" method to be the best

solution for the path planning problem posed as a two point

boundary value problem.

Although the deeper dives' final depth was off b.

six inches in the selected method and pitch was slightly

over a tenth of a degree, it was clear that this method had

very good accuracy and near real time performance, it

produced the smallest objective function and required the

least reruns on the average than the other methods.

It is evident that for the type of dynamic path

planning problem undertaken here, the need for an end

constraint to "drive" the trajectory to its final goal was

determined. The ability of the ADS optimization program

proved feasible to satisfy this simple linearized trajectory

problem.
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IV. PATH PLANNING APPLICATIONS

A full scale nonlinear simulation model of the study

vehicle was developed by Lt. Boncal in Reference 18. The

model was a full six degree-of-freedom model with 12 states

that took into account all properties of the vehicle and its

motion through water. Comparison of the previous linear

model results with those of the nonlinear model were made

for the following reasons:

1) the solution to the linear problem would be easier
and, therefore, would require less real time to
compute, and

2) a determination was necessary as to whether the
linearized version would be accurate enough compared
to the nonlinear version.

A. LINEAR VERSUS NONLINEAR PATH PLANNING

Each time the optimization program was run, the data

that it produced provided the control vector for each

control surface used, e.g., the stern plane and bow plane

time histories. Also, the time history of the states from
.

beginning to end were computed. It was planned that this

state time history would be the desired state trajectory

which would be Lupplied to a state servo for the vehicle.

Figure 4.1 illustrates this design concept. The servo then

-would follow the desired state and keep the error minimal

between the actual position and the desired position,
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therefore following the optimal path. Consequently, the

accuracy of the X history is of critical importance.

With the assumptions used in the simplified linear

model,it was obvious that the straight ahead motion (the x

position) would not correspond well to the nonlinear model.

Since the depth was a function of the horizontal speed, the

z-position states could be expected to be in error as well. 

These results can be seen graphically in Figure 4.2 where

both the nonlinear and linear optimized trajectories are

represented in the x-z plane. Due to the decoupled axial [

force equation (X) the linear trajectory extends to the

454

%e., le

Uoright of the nonlinear trajectory. Due to the

nonlinearities in the nonlinear model, the vehicle descends "

more rapidly, then levels out for a longer period of time. -,

The linear model tends to make a more gradual descent and

spend less time leveling out.

The time to achieve the nonlinear optimal trajectory was..-

an order of magnitude greater than for the linearized model
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using the same weighting factors for both models. This

greatly hinders the feasibility of utilizing the full non-

linear model for real time path planning. Since the

nonlinear model was an entirely new plant, the analysis

discussed previously for the linear model would have to be

applied to improve the timing and accuracy in the nonlinear

case. A study was conducted on the effect of weighting the

ADS constraints only and an improvement from 60 seconds to

approximately 22 seconds was achieved. Additional time may

be saved if the best Q matrix could be determined as well.

One additional test was run on the comparison of the two

models. As mentioned earlier, the ADSL program also

produces the control vector that achieved the optimized

states. In this test, the control vector for the linearized

model (Fig. 4.3a) was supplied to the nonlinear simulation.

The results showed that the nonlinear model descended to

within .05 feet of the ordered depth and the pitch was

slightly over three tenths of a degree at the final time

(Fig. 4.3). Recalling that, although the states do not

match up well enough to use the simplified linear model due

to the oversimplification of the decoupled axial force

equation (Fig. 4.2), the essential dynamics in the linear

model were nevertheless valid since the desired depth was

achieved using the combination above.
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B. OBSTACLE AVOIDANCE

A primary goal of a path planner is to plan a safe

trajectory between two points specified by the command

intelligence of the vehicle. Between the two points may be

visible obstacles, as well as hidden obstacles that may be

unknown until the vehicle commences further on its

trajectory. Consequently, the safe path must sometimes be

recomputed in real time to avoid a collision. Figure 4.4

illustrates this with two trajectories. The first

trajectory (called the "nonlinear trajectory") was the

optimal or "best" path to the new depth without any

obstacles in the path. With an obstacle positioned at the

(+) symbol, the obstacle avoidance algorithm must compute a

new trajectory for the vehicle to take to avoid the

obstacle. The obstacle in this study was considered to be a

fixed obstacle in space.

1. Obstacle Avoidance Algorithm

A simple obstacle avoidance algorithm was written

for the purpose of testing the ADSL program to ensure its

capability was adequate to perform this function.

The algorithm was based on the procedure a human

would use to avoid an obstacle in his path. Once the

obstacle was detected, interest in the obstacle would

heighten. The distance between the individual and the

obstacle would be kcpt track of, and the human would take

appropriate action to avoid, or make the decision to
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collide, and pay the penalty. Once past, interest in the

object would decrease to zero. In an AUV, collision with

the obstacle will not be an option.

The size and position of any obstacle was determined

to be information supplied by the command intelligence of

the vehicle to the path planner. The command intelligence

also was assumed to generate an area surrounding the

obstacle that was termed the "avoidance Lone." This zone

was based on the size and maneuverability of the vehicle and

the threat of the obstacle. This zone was what the path

planner saw as the obstacle which the trajectory of the AUV

center of gravity could not penetrate. For the purposes of

this study, this obstacle data was emulated by the

programmer who picked an arbitrary radius around a selected

point obstacle. This is illustrated in Figure 4.5. Also

for purposes of the present study, a one foot radius was

arbitrarily chosen. The avoidance zone appears oval in the

figure due to the axis scaling.

The algorithm, which can be seen in the THEIND DSL

program in Appendix B, takes the time from start until the

vehicle would be at the x-position of the obstacle and

divides that equally into 10 positions with respect to time.

As the positions are reached at the specified times, the

distance between the vehicles' current position and the

obstacle was computed. The distance then was made into an

inequality constraint using ADS and defining IDG = 0 (refer

" - 52
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to Table 6). Each of these ten new constraints had to be

satisfied by ADS. Figure 4.6 illustrates the results using

the full scale nonlinear model. The obstacle was avoided

and the avoidance zone was not violated by the vehicle

trajectory.

This simple algorithm only concerned itself with the

obstacle up to the point where it was at the top center of

the avoidance zone. This point may not always be the

closest point of approach depending on the size of the

avoidance zone. In these cases, the algorithm could be

achanged to compute distances to the obstacle for some

designated amount of time after passing it.

FThe linear and nonlinear obstacle avoidance runs

were timed to determine the time difference between the

obstructed and unobstructed run times. Table 9 presents the

results. It can be seen that the linear model run time was

increased four tenths of a second from the unobstructed case

to the obstructed case. This has a great advantage, again,

over the nonlinear case due to the fact that the nonlinear

problem doubled its run time in order to avoid the obstacle.
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TABLE 9

LINEAR/NONLINEAR OBSTACLE AVOIDANCE TIMES

MODEL TYPE WITHOUT OBSTACLE WITH OBSTACLE

LINEAR 3.12 SEC 3.50 SEC

NONLINEAR 22.57 SEC 48.67 SEC

2. Traiectory Analysis

Figure 4.3 shows the obstacle avoidance path above

the optimal trajectory. This indicates that there are

limits to the vehicle trajectory due to the vehicle dynamics

and motion restrictions placed on the control surfaces.

This effect was found when an obstacle was placed at

different points along the optimal path and the avoidance

trajectory was always above the obstacle. This is true

since the ADS end constraints that are "driving" the vehicle

are attempting to satisfy both of the weighted depth and

pitch constraints. With an obstacle along the optimum path,

the vehicles' maneuverability characteristics come into play

--it becomes harder to take pitch off than it was to put it

on to achieve the desired end state.
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IV

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The following conclusions can be drawn from the

feasibility study:

1. Optimal control theory is a feasible method of path
planning with or without fixed obstacles. This
study demonstrated successful path planning using
the following:

a) the objective function

T
f ([xf(t)-x(t)] TQ[xf(t)-x(t)] + u(t)TRu(t))dt

b) ADS equality constraints on desired end states, -.

c) ADS inequality constraints for obstacle avoidance,

d) a fixed step integration method (Rectangular) to
integrate the rate equations and the objective
function (time step = 0.1 sec, 10 intervals).

2. Real time path planning may be achieved with linear
models. "Real time" here is arbitrarily determined to
be from 1 to 2 minutes for the full 12 state
optimization. Additional timing studies need to be
done in order to determine this more precisely. The
linearized dive plane equations of motion were studied
and it was determined that a solution for a 20 second p

dive maneuver required three seconds of computer time
to produce the "best" path.

3. The full nonlinear model computation time for the same
linear dive maneuver was determined to be at most 22
seconds.

4. The simplified linear state trajectory was not
compatible with the nonlinear trajectory. The linear
model for dive plane motion exceeded the realm of
small perturbation theory enough to be considered as a
very poor substitute for planning the path of a real
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vehicle in the dive plane under the assumption of
decoupled dive plane motion.

5. The ADS optimization methods that gave the best
results in the unconstrained cases was the
Fletcher-Reeves method (014) and for the constrained
cases was the modified method of feasible directions
(057). Introduction of the strategy option provided
less accuracy and more run time in the unconstrained
case, and good accuracy and additional time in the
constrained case.

6. The best method of achieving the trajectory between
the start point and terminal point was to utilize the
power of the ADS equality constraints to "drive" the
trajectory to the desired final condition states.
Weighting improved not only the accuracy but also run
times.

* 7. The weighting values of the constraints in the linear
model were not the "best" combination for the
nonlinear model. Weighting was determined to be a
function more of the plant model used than the size of
the maneuvers the plant must undergo when using ADS
constraints.

8. Obstacle avoidance was performed successfully using a
simple algorithm that enforced constraints on the
distance between the vehicle center of gravity and a
given radius around the obstacle, called the
"avoidance zone."

B. RECOMMENDATIONS

The following recommendations are offered to continue

the development of a path planner algorithm for use in an

autonomous underwater vehicle:

1. Carry out the procedures implemented here on such
additional models as:

a) the full nonlinear model to simulate other vehicle

• motion than the dive plane alone;

b) the full linearized model in other motions,

c) nonlinear reduced order models of the vehicle.
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2. Conduct model sensitivity studies on the limits of
maneuverability of the vehicle.

3. Continue development of the obstacle avoidance
function to be able to have the model traverse a more
dense environment of fixed and moving obstacles.

4. Develop the interface between the AUV command and
control intelligence and the path planner, and between
the vehicle controller and path planner.

5. Develop the program for eventual programming into a
small microprocessor-based control structure.

'4.0
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APPENDIX A

EXAMPLE 10.2-6 FROM SAGE [REF. 19:P. 313]

-In Note: Solution presented here is based on the gradient in

function space technique.
'V 1

Consider the minimization of J = (f 2 x2 + u2 )dt for the
0

system x -x2 + u, x(0) 1 10.0. We first need to determine

the adjoint and the gradient equations. For this problem,

the Hamiltonian is H = x+ 12 - x2 + Xu, and thus the

adjoint equation is i = -x + 2Xx with the terminal condition

(1) = 0. The control gradient is 3H/Du = u + Suppose

that we guess the initial control u°(t) = 0, which is not

too unreasonable, since the final value of the control,

u(1) , should be zero, and use K = 1. To implement the

gradient method, the steps we must take are:

1. Determine xN(t) from uN(t) for t -[0,1] by

xN = _[xN(t)]2 + uN(t), xN(o) = 10

2. Determine XN(t) from xN(t) by

N= xN(t) + 2 \N(t)XN(t) , \N(1) = 0
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3. Determine JH/3uN from

H _ uN(t) + .N(t)

4. Determine ;uN(t) and ' N from

H KN

uN(t) = -K - = - Ku - K
U .

11 H  2 1 NN 2
LjN(t) = -K f [1] at = -K [uN t) + (t)] dt

0du 0

5. Compute the control for the next iteration

uN+l(t) = uN(t) + ,uN(t)

6. Shuffle data and repeat the procedure, starting at 1,
until _ uN(t) or UjN(t) changes very little from
iteration to iteration.

For the particular initial control assumed here, we

obtain for the various steps in the procedure:

1. u°(t) = 0, x°(t) = 10/(1 + lot)

2. °[(t) = 1 - (1 + lOt) 2 /121]7

3. H/ u0 = -[1 - (1 + l0t) 2/121]1

4. 'u°(t) = -E[ - (1 + lOt) 2/121]

jo(t)- f [1 - (1 + lOt) 2/121] 2dt
0

= - (0.0458)
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'aFigures 2.1 and 2.2 are the curves generated by the

equations above.
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APPENDIX B

PROGRAMS

This appendix contains the three primary programs thatwere

used for this feasibility study. They are:

1) STSPACE3 DSL--This is the state formulated DSL simulation
of the linearized model for motion in the vertical plane.

2) THE1ND DSL--This is the ADSL program used to optimize the
linear plant trajectories.

3) OPTT3 DSL--This program is the ADSL program used to
optimize the full scale nonlinear model with the stern and
bow planes decoupled.

PROGRAM NAME: STSPACE3 DSL

TITLE AUV VERTICAL PLANE MANEUVERS (STATE SPACE) REVISED

* EQUILIBRIUM CONDITION IS CONSTANT SPEED (FT/SEC) IN
* THE HORIZONTAL DIRECTION

CONST UO=6.0

CONST MA= , THETAO= , WO= , IY=

CONST ZW=- , ZQ= , ZQDOT= , ZWDOT=
CONST ZDB= , ZDS= , ZO=

CONST MW= , MQ= , MQDOT= , MWDOT=
CONST MDB= , MDS= , MTHETA=

METHOD RECT
CONTROL FINTIM = 10., DELT= .1
INITIAL

Al=-ZW
A2=(MA-ZWDOT)
A3=-(ZQ+MA)
A4=-ZQDOT
B1=-MW

5, B2=-MWDOT
B3=-MQ
B4= (IY-MQDOT)
B5=-MTHETA
CI=ZDS
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C2=ZDB
C 3-MDS
C4=MDB
C5=C3- (B4*C1) /A4
C6=C4-(B4*C2)/A4
D1=B2- (B4*A2)/A4
D2=B1- (B4*A1)/A4
D3=B3- (B4*A3)/A4

DERIVATIVE

THETDD= (1/A4) *(C1*DS+C2*DB-A1*W-A2*WDOT-A3*THETAD)
WDOT= (1/Dl)*(C5*DS + C6*DB- D2*W -D3*THETAD-

B5 *THETA)
THETAD= INTGRL (THETAC, THETDD)
THETA = INTGRL(THETAQ,THETAD)
W = INTGRL(WO,WDOT)
Z = INTGRL(ZO,W-(UO/UO)*THETA)
DEPTH=-Z
PITCH=THETA/. 01745
BOWANG=(DB/. 01745)
STNANG=(DS/. 01745)

DYNAMIC

DS .08725*STEP(0.0)-.02843*STEP(2.0)-...
.003636*STEP(3.0)-.008036*STEP(4.0)-...
.015477*STEP(5.0)-.02670*STEP(6.0)-...
.04007*STEP(7.0)-.053332*STEP(8.0)-
* 086084*STEP(9 .0)

DB =-.2443*STEP(0.0) +- .3186*STEP(8.0) +
* 17*STEP(9. 0)

TERMINAL

PRINT 1., THETDD, THETAD, THETA, ZDD, W,Z, DEPTH, PITCH, DS ...

BOWANG, STNANG
SAVE .5,THETDD,THETAD,THETA,ZDD,W,Z,DEPTH,PITCH,DS ...

BOWANG, STNANG
GRAPH (DE=TEK6 18) TIME, DS
GRAPH (DE=TEK6 18) TIME, DEPTH
GRAPH (DE=TEK6 18) TIME, WDOT
GRAPH(DE=TEK618) TIME,W
GRAPH (DE=TEK6 18) TIME, THETDD
GRAPH (DE=TEK6 18) TM, THETAD
GRAPH (DE=TEK618) TIME ,THETA
GRAPH(DE=TEK618) TIME, PITCH
GRAPH(DE=TEK618) TIME, BOWANG
GRAPH (DE=TEK6 18) TIME, STNANG
END
STOP
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NOTE: Coefficients must be supplied for the particular
vehicle being studied.
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PROGRAM NAME: THE1ND DSL

TITLE RUN: (NR) LINEAR AUV DYNAMIC PATH PLANNER FOR VERTICAL
PLANE MOTION

" SEPARATED BOW AND STERN PLANE CONTROL NON-DIMENSIONAL
" DATA FOR NEW OBJECTIVE THAT INCLUDES THE ERROR UNWEIGHTED
" UPDATE: "*OBSTACLE AVOIDANCE**
" USING OBJ= INTGRL? (Z-10) **2+W**2+THETA**2+THETAD**2+U**2
" OBJECTIVE FUNCTION WITH ADS CONSTRAINTS

******************ADSL SET UP******************

FIXED ISTRAT, IOPT, IONED, IPRINT, INFO, IGRAD, NDV, NCON
FIXED IDG, NGT, IC, NRA, NCOLA, NRWK, IWK, NRIWK, 0, H
D DIMENSION AW(42,42)
ARRAY WK(5000), IWK(1000),DIST(15)

-rARRAY DX(21),VLB(21),VUB(21),GW(15), DF(21), IDG(15), IC(20)
PARAM NRA=42, NCOLA=42, NRWK=5000, NRIWK=1000
PARAM IGRAD=0, INFO=O, NDV=20, NCON=15, NGT=20
TABLE DX(1-2)=2*.0, DX(3-21)=19*0., IDG(1-4)=4*-1
TABLE IDG(5-15)=11*O
TABLE VLB(1-9)=10*-. 17452, VLB(11-19)=9*-. 2443
TABLE VLB(10)=0.,VLB(20-21)=0.
TABLE VUB(1-9)=9*. 17452, VUB(11-19) =9*.2443
TABLE VUB(1O)=0.,VUB(20-21)=0.
TABLE DIST(15)=15*0.0
PARAM ISTRAT=0, IOPT=5, IONED=7, IPRINT=2020
INCON U=0., H=0
METHOD RECT
CONTROL FINTIM= 7.00, DELT=.1
PRINT THETAD,W, DEPTH, PITCH, XPOS, ZPOS, DT

*********************DSLMODEL SET UP***************

* EQUILIBRIUM CONDITION IS CONSTANT SPEED (NON-
* DIMENSIONALIZED) BY UO = 6 FT/SEC

CONST UO=1.O, XOBS= ,ZOBS=

CONST MA=O.0962, THETAO=0., ZO=0.,WO=0., IY=.00606

CONST ZW= ,ZQ= ,ZQDOT= ,ZWDOT=

CONST ZDB= ,ZDS= ,ZO=0.

CONST MW= ,MQ= ,MQDOT= ,MWDOT=

CONST MDB= ,MDS= ,MTHETA=

INITIAL

ORDDEP =1.00

A1=-ZW
A2= (MA-ZWDOT)

66



A3=- (ZQ+MA)
A4=-ZQDOT
B 1=-MW
B2 =-MWDOT
B 3=-MQ
B4= (IY-MQDOT)
B5=-MTHETA
C1=ZDS *

C2 = ZDB
C3=MDS
C4=MDB
C5=C3- (B4*C1)/A4
C6=C4-(B4*C2)/A4
Dl=B2- (B4*A2) /A4
D2=B1- (B4*A1)/A4
D3=B3- (B4*A3) /A4
CALL DADS (INFO,ISTRAT, IOPT, IONED, IPRINT, IGRAD,..

NDV,NCON,DX,VLB,VUB,OBJ,GW,IDG,NGT,IC,DF,....
AW,NRA,NCOLA,WK,NRWK, IWK,NRIWK)

IF(INFO.EQ.0) DELPRT = 0.2
IF(INFO.EQ.0) DELPLT = 0.2

DERIVATIVE

THETDD= (1/A4) *(C1*DS+C2*DB-A1*W-A2*WDOT-A3*THETAD)
WDOT= (1/D1)*(C5*DS + C6*DB - D2*W - D3*THETAD-

B5 *THETA)
THETAD= INTGRL(THETAO, THETDD)
THETA = INTGRL(THETAO,THETAD)
W-= INTGRL(WO,WDOT)
Z = INTGRL(ZO,W-UO*THETA)
DEPTH=-Z
PITCH=THETA/. 01745
BOWANG= (DB/ .01745)
STNANG= (DS/.01745)
INTGRD =((W*W+ (Z-ORDDEP) *(Z-ORDDEP) +...

THETAD*THETAD+THETA*THETA)) + (DS*DS+DB*DB)
OBJ1 INTGRL(0.,(0.5)*INTGRD)
OBJ =OBJ1

DYNAMIC

RN=TIME/ (FINTIM/lO. -DELT/lOOQO.)
O=INT (RN) +1
IF(O.EQ.11) 0=10

" ADDITIONALLY THE PLANES SHOULD BE AT EQUILIBRIUM SO THE
" VEHICLE WILL PROCEED AT THIS NEW DEPTH WITHIN SOME
" TOLERANCE

DS=DX (0)
DB=DX (10+0)
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IF(O.GE.10) DS=O.
IF(O.GE.10) DB=0.

*

* CONSTRAINTS FOR A DIVE
,

* ORDERED DEPTH = ORDDEP

GW(l) =(Z-ORDDEP)/2.
GW(2) =(ORDDEP-Z)/2.

* *

* AUV'S FINAL STATE MUST BE LEVEL FLIGHT AS FOLLOWS
*

GW(3) = THETA*10.
GW(4) = -THETA*I0.

,

* X-Z POSITIONING FOR OBSTACLE AVOIDANCE
XPOS=17.425*TIME
ZPOS=-Z*17.425

,

* AVOIDING THE OBSTACLE

IF(TIME.GE.0.0.AND.TIME.LE.XOBS/17.425) THEN
TIME1 = XOBS/17.425
QN=TIME/(TIME1/10.-DELT/10000.)
D = I N T ( Q N ) + 1
DIST(D)=SQRT( (XPOS-XOBS)*(XPOS-XOBS)+(ZPOS-ZOBS)* ...

(ZPOS-ZOBS))
GW(4+D) = (l.-DIST(D))
ELSE
ENDIF

,

TERMINAL
IF(INFO.EQ.0) THEN
DO 9000 D=l,1l
WRITE(*,9999) DIST(D)

9999 FORMAT(lX,E15.4)
9000 CONTINUE

ELSE
ENDIF
IF(INFO.EQ.0) CALL ENDJOB
CALL RERUN

END
STOP

NOTE: The coefficients must be provided for the particular
vehicle being studied.
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PROGRAM NAME: OPTT3 DSL

TITLE RUN: NONLINEAR AUV MODEL /STERN PLANE AND BOW PLANE
SEPARATED

* (1) UPDATED:11/16/87
* (2) 100.00 FT DEPTH CHANGE IN 20 SEC
* (3) RIGHT OBJ EQUATION
* (4) ADS CONSTRAINTS ON DEPTH AND PITCH
* (5) OBSTACLE FURTHER DOWN THE TRAJECTORY AND ABOVE IT

*FIXED ISTRAT, IOPT, IONED, IPRINT, INFO, IGRAD, NDV, NCON
FIXED IDG, NGT, IC, NRA, NCOLA, NRWK, IWK, NRIWK, 0, H,D,C
D DIMENSION AW(82,82)
ARRAY WK(5000), IWK(1000)
ARRAY DIST(40)
ARRAY DX(21),VLB(21),VJB(21),GW(15), DF(21), IDG(15), IC(20)
PARAM NRA=82, NCOLA=82, NRWK=5000, NRIWK=1000
PARAM IGRAD=0, INFO=Q, NDV=20, NCON=15, NGT=20
TABLE DX(1-2)=2*.0,DX(3-21)=19*o., IDG(1-4)=4*-1
TABLE IDG(5-15)=11*0
TABLE VLB(1-9)=9*-. 17452, VLB(11-19)=9*-.2443
TABLE VLB(10)=0.,VLB(20-21)=0.
TABLE VUB(I-9)=9*. 17452, VUB(I1-19)=9*.2443
TABLE VUB(10)=0.,VUB(20-21)=0.TABLE DIST(1-40)=40*0.
PARAM ISTRAT=0, IOPT=5, IONED=7, IPRINT=2020
INCON H=0, OBS1=0.,YZONE=0.
METHOD RECT
CONTROL FINTIM=20., DELT=.10
PRINT THETAD,W, DEPTH, PITCH,XPOS, DEPTH,NDX,NDZ ,NDT

********************DSL MODEL SETUP***********

D DIMENSION MM(6,6),G4(4),GK4(4),BR(4),HH(4)
D DIMENSION B(6,6),BB(6,6)
D DIMENSION A(12,12), AA(12,12)
D COMMON / BLOCKi / F(12), FP(6), MMINV(6,6), UCF(4)
FIXED N, IA, IDGT, IER, LAST,J, K,M,JJ, KK, I
INTEGER
ARRAY WKAREA(54), X(12)

CONST

* LONGITUDINAL HYDRODYNAMIC COEFFICIENTS

CONST XPP = XQQ = ,XRR = ,XPR ..

XUDOT= ,XWQ = ,XVP = ,XVR=..
XQDS= ,XQDB= ,XRDR= ,X-kVV
XwW XVDR= ,XWDS= ,XWDB=..

XDSDS= ,XDBDB= ,XDRDR= ,XQDSN= ...

XWDSN= ,XDSDSN=
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* LATERAL HYDRODYNAMIC COEFFICIENTS
* p,

CONST YPDOT= ,YRDOT= ,YPQ = ,YQR =
YVDOT= ,YP = ,YR = ,YVQ =
YWP = ,YWR = ,YV= ,YVW =
YDR = ,CDY =

* NORMAL HYDRODYNAMIC COEFFICIENTS
*|

CONST ZQDOT= ,ZPP = ,ZPR = ,ZRR =
ZWDOT= ,ZQ = ,ZVP = ,ZVR =
ZW= ,ZVV = ,ZDS = ,ZDB =
ZQN = ,ZWN = ,ZDSN= ,CDZ =

* ROLL HYDRODYNAMIC COEFFITIENTS

CONST KPDOT= ,KRDOT= ,KPQ = ,KQR =
KVDOT= ,KP = ,KR = ,KVQ=
KWP = , KWR = KV = ,VW=..

KPN = ,KDB =

* PITCH HYDRODYNAMIC COEFFICIENTS

CONST MQDOT= ,MPP = ,MPR = ,MRR = .-
MWDOT= ,MQ= ,MVP = ,MVR=
MW- ,MVV = ,MDS = ,MDB =
MQN = ,MWN = ,MDSN =

* YAW HYDRODYNAMIC COEFFICIENTS

CONST NPDOT= ,NRDOT= ,NPQ = ,NQR =
NVDOT= ,NP = ,NR = ,NVQ =
NWP = ,NWR= ,NV- ,NVW =
NDR =

,

* MASS CHARACTERISTICS OF THE FLOODED MARK IX VEHICLE

CONST WEIGHT = , BOY = ,VOL = ,XG =
YG = , ZG= ,XB= ,ZB =
IX = , IY= ,IZ= ,IXZ=
IYZ= , IXY= ,YB=
L = , RHO = ,G = ,NU .
AO = ,KPROP = ,NPROP = ,XlTEST=
DEGRUD= ,DEGSTN=

* INPUT INITIAL CONDITIONS HERE IF REQUIRED
.

INITIAL
NOSORT

D=O
H=H+I
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ORDDEP - 17.425
XOBS=58.666
ZOBS=6. 0000
IF(H.EQ.1) THEN
U = 0.0
V = 0.0
W = 0.0
P = 0.0
Q = 0 0
R = 0.0
XPOS = 0.0
YPOS = 0.0
ZPOS = 0.0
PSI =0.0
THETA = 0.0
PHI =0.0

UO = 6.0
VO =0.0
WO = 0.0
P0 = 0.0
QO = 0.0
RO = 0.0
PHIO = 0.0
THETAO = 0.0
PSI0 = 0.0
DB= 0.0
DS = 0.0
DR = 0.0
RPM = 500
LATYAW = 0.0
NORPIT = 0.0
RE = UO*L/NU
CDO = .00385 + (1.296E-17)*(RE - 1.2E7)**2 F-

• DEFINE LENGTH FRACTIONS FOR GAUSS QUADUTURE TERMS*

G4(1) = 0.069431844

G4(2) = 0.330009478",
G4(3) = 0.669990521
G4(4) = 0.930568155

• DEFINE WEIGHT FRACTIONS FOR GAUSS QUADUTURE TERMS

GK4(1) = 0.1739274225687
GK4(2) = 0.3260725774312
GK4(3) = 0.3260725774312 "
GK4(4) = 0.1739274225687

• DEFINE THE BREADTH BB AND HEIGHT HH TERMS FOR THE

INTEGRATION
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BRl 571

BR(2) = 75.7/12
BR(2) = 75.7/12

BR(4) = 55.08/12

HH(l) = 16.38/12

HH(2) =31.85/12

HH(4) = 23.76/12

MASS = WEIGHT/G

DIVAMP =DEGSTN*O.0174532925
RUDAMP = DEGRUD*0.0174532925

N = 6
DO 15 J =1,N

DO 10 K = 1,N
MMINV(J,K) = 0.0
MM(J,K) =0.0

10 CONTINUE
15 CONTINUE

MMll AS-(HO2*L*)XDT

MM(3,3) = MASS - ((RHO/2)*(L**3)*ZDOT)

104(1,6) = MASS*YG

14M(2,2) = MASS*X -((RHO/2L)*yv** )ZDT

MM0424) = -MASS*ZG - ((RHO/2)*(L**4)*pDOT)

1042,6) = IXS*X - ((RHO/2L)*L**4)yDT

MM(3,6) = MASS - ((R}O/2)*(L**)*KRDOT)

MM(3,1) = MASS*YG
MM(535) = -MASS*XG -((RHO/2)*(L**4)*zQDOT)

MM(54) = -ISSYG
MM(4,4) = IX - ((RHO/2)*(L**5)*MPDOT)

MM(5,4) = -IY
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MM(6,1) = -MASS*YG
MM(62) =MAS*XG ((RO/2)(L*4)*NDOT

MM(6,4) = MAXG - ((RHO/2)*(L**)*NDOT)

14M(6,5) = -IYZ
MM(6,6) = IZ - ((RHO/2)*(L**5)*NRDOT)

LAST = N*N+3*N
DO 20 M = 1,LAST
WKAREA(M) 0.0

20 CONTINUE

IER = 0
'A= 6

IDGT = 4
WRITE( 8,400)((MM(I,J), J= 1,6),I1 1,6)

CALL LINV2F(MM,N,IA,MMINV,IDGT,WKAREA,IER)

WRITE( 8,400)((MMINV(I,J), J= 1,6),1 1,6)
400 FORMAT(6E12.4)

ELSE
ENDIF

CALL DADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD,....
NDV,NCON, DX, VLB,VUB, OBJ,GW, IDG,NGT, IC, DF,AW, NRA, . ..
NCOLA,WK,NRWK, IWK,NRIWK)
IF(INFO.EQ.0) DELPRT =1.0

DERIVATIVE

NOSORT

* PROPULSION MODEL

SIGNJ = 1.0
IF (U.LT.0.0) SIGNU =-1.0

IF (ABS(U).LT.X1TEST) U = XlTEST
SIGNN =1.0
IF (RPM.LT.0.0) SIGNN -1.0
ETA 0 .012*RPM/U
RE =U*L/NU

CDO =.00385 + (1.296E-17)*(RE - 1.2E7)**2
CT 0 .008*L**2*ETA*ABS(ETA)/(AO)
CT1 =0.008*L**2/(AO)

EPS =-1.0+SIGNN/SIGN'U*(SQRT(CT+1.0)-...

1.0)! (SQRT (CT1+1 .0) -1.0)
XPROP =CD0*(ETA*ABS(ETA) -1.0)

* CALCULATE THE DRAG FORCE, INTEGRATE THE DRAG OVER THE
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* VEHICLE AND INTEGRATE USING A 4 TERM GAUSS QUADUTURE

LATYAW = 0.0
NORPIT = 0.0
DO 500 K = 1,4

UCF(K) = SQRT((V+G4(K)*R*L)**2 + (W-G4(K)*Q*L)**2)
IF(UCF(K) .GT.1E-10) THEN
TERMO =(RHO/2)*(CDY*HH(K)*(V+G4(K)*R*L)**2 4...

CDZ*BR(K) *(W-G4 (K) *Q*L) **2)
TERM1 TERMO*(V+G4(K)*R*-L)/UCF(K)
TERM2 = TERM0*(W-G4(K)*Q*L)/UCF(K)
LATYAW = LATYAW + TERM1*GK4(K)*L
NORPIT = NORPIT + TERM2*GK4(K)*L
END IF

500 CONTINUE

* FORCE EQUATIONS

* LONGITUDINAL FORCE

FP(l) =MSS*V*R-MASS*W*Q+MASS*XG*Q**2+MSS*XG*R**2...
* i.MASS*YG*P*Q-MASS*ZG*P*R+(RHO/2) *L**4*..

(XPP*P**2 + XQQ*Q**2 + XRR*R**2 + XPR*P*R) ...

.qj 4-(RHO/2) *L**3* (CWQ*W*Q +XVP*V*P+XVR*V*R+U*Q..
* (XQDS*DS+XQDB*DB) +XRDR*U*R* DR)+ +.
(RHO/2)*L**2*(XVV*V**2 + XWW*W**2 +
XVDR*U*V*DR + U*W*(XWDS*DS+XWDB*DB)+U**2* ..
(XDSDS*DS**2+XDBDB*DB**2 + XDRDR*DR**2) ) ..
(WEIGHT -BOY)*SIN(THETA) +(RHO/2)*L**3* ..
XQDSN*U*Q*DS*EPS+(RHO/2) *L**2* (XWDSN*U*W*DS+...
XDSDSN*U**?*DS**2) *EPS +(R}IO/2) *L**2*U**2*XPROP

* LATERAL FORCE

FP(2) = -MASS*U*R + MASS*XG*P*Q + MASS*YG*R**2-
MASS*ZG*Q*R +(RHO/2)*L**4*(YPQ*P*Q +
YQR*Q*R)+(RHO/2)*L**3*(YP*U*P + YR*U*R +
YVQ*V*Q + YWP*W*P +- YWR*W*R) + (RIO/2)*L**2* ...
(YV*U*V + YVW*V*W .iYDR*U**2*DR) -LATYAW ..

'I NRMAL+(WEIGHT-BOY) *... COS(THETA) *SIN(PHI)

NOML*OC

FP(3) =MASS*U*Q - 14ASS*V*P - MSS*XG*P*R-
MASS*YG*Q*R +MASS*ZG*P**2 + MSS*ZG*Q**2 + .

(RHO/2)*L**4*(ZPP*P**2 + ZPR*P*R +ZRR*R**2) ...
+ (RHO/2)*L**3*(ZQ*U*Q + ZVP*V*P + ZVR*V*R) ...
+(RHO/2)*L**2*(ZW*U*W + ZVV*V**2+U**2*(ZDS* ..
DS+ZDB*DB) )-NORPIT+ (WEIGHT-BOY)~*COS (THETA)* ...
COS(PHI)+ (RHO/2)*L**3*ZQN*U*Q*EPS..
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+(RHO/2)*L**2*(ZWN*U*W +ZDSN*U**2*DS)*EPS

* ROLL FORCE

FP(4) =-IZ*Q*R+IY*Q*R-IXY*P*R +IYZ*Q**2 -IYZ*R**2
+IXZ*P*Q +MASS*YG*U*Q -MASS*YG*V*P-
MASS*ZG*W*P+(RflO/2)*L**5*(KPQ*P*Q+ KQR*Q*R)..
+(RIIO/2)*L**4*(KP*U*P +KR*U*R + KVQ*V*Q +
KWP*Wq*P + KW*W*R) +(RHO/2)*L**3*(KV*U*V +
KVW*V*W) +(YG*WEIGHT -YB*BOY)*COS(THETA) *
COS(PHI) -(ZG*WEIGHT -ZB*BOY)*COS(THETA)*
SIN(PHI) + (RHO/2)*L**4*KPN*U*P*EPS+ .

(RHO/2) *L**3*U**2*KPROP +MASS*ZG*U*R

* PITCH FORCE

FP(5) = -IX*P*R +IZ*P*R+IXY*Q*R-IYZ*P*Q-IXZ*P**2
+IXZ*R**2 -MASS*XG*U*Q + MASS*XG*V*P +
MASS*ZG*V*R -MASS*ZG*W*Q +
(RHO/2)*L**5*(MPP*P**2 +MPR*P*R .

+MRR*R**2)+(RHO/2)*L**4*(MQ*U*Q + M VP*V*P +.

MVR*V*R) + (RIO/2)*L**3*(MW*U*W +

MVV*V**2+U**2* (MDS*DS+MDB*DB) )+ NORPIT-
(XG*WEIGHT- XB*BOY) *COS(THETA) *COS(PHI) +

(RHiO/2) *L**3* (MWN*U*W-iMDSN*U**2*DS) *EPS-
(ZG*WEIGHT-ZB*BOY) *SIN(THETA)

* YAW FORCE

FP(6) = -IY*P*Q+IX*P*Q+IXY*P**2-IXY*Q**2+IYZ*P*R
IXZ*Q*R -MASS*XG*U*R + MASS*XG*W*P-
MASS*YG*V*R + MASS*YG*W*Q +
(RHO/2)*L**5*(NPQ*P*Q + NQR*Q*R)
+(RHO/2)*L**4*(NP*U*P+NR*U*R + NVQ*V*Q
+NWP*W*P + NWR*W*R) +(RHO/2)*L**3*(NV*U*V +.

NVW*V*W+NDR*U**2*DR)- LATYAW + (XG*WEIGHT
XB*BOY)*COS(THETA)*SIN(PHI)+(YG*WEIGHT)*
SIN(THE TA)+(RHO/2)*L**3*U**2*NPROP-
YB*BOY*SIN (THETA)

* NOW COMPUTE THE F(1-6) FUNCTIONS

DO 600 J 1,6
F(J) = 0.0

DO 600 K =1,6
F(J) = ?MINV(J,K)*FP(K) +F(J)

600 CONTINUE

* THE LAST SIX EQUATIONS COME FROM THE KINEMATIC
* RELATIONS

* FIRST SET THE DRIFT CURRENT VALUES
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.17.

ap UCO= 0. 0
VCO = 0. 0
WCO = 0. 0

* INERTIAL POSITION RATES F(7-9)

F(7) =UCO + U*COS(PSI)*COS(THETA) +
V*(COS(PSI) *SIN(THETA)* ..
SIN(PHI) - SIN(PSI)*COS(PHI)) +
W*(COS(PSI) *SIN(THETA) *COS(PHI)+..
SIN(PSI) *SIN(PHI))

F(8) =VCO + U*SIN(PSI)*COS(THETA) +
V*(SIN(PSI)*SIN(THETA)*SIN(PHI) +
COS(PSI)*COS(PHI))+ W*(SIN(PSI)*SIN(THETA)* ...
COS(PHI) -COS(PSI)*SIN(PHI))

F(9) = WCO - U*SIN(THETA) +V*COS(THETA)*SIN(PHI)
+W*COS (THETA) *COS (PHI)

* EULER ANGLE RATES F(10-12)

F(10) =P + Q*SIN (PHI) *TAN (THETA)+..
R*COS (PHI) *TAN (THETA)

F(11) Q*COS(PHI) - R*SIN(PHI)

F(12) Q*SIN(PHI)/COS(THETA) + R*COS(PHI)/COS(THETA)

UDOT = F(l)
VDOT = F(2)
WDOT = F(3)
PDOT = F(4)
QDOT = F(5)
RDOT = F(6)
XDOT = F(7)
YDOT =F(S)
ZDOT = F(9)
PHIDOT = F(10)
THETAD = F(11)
PSIDOT = F(12)

U = INTGRL (UO,UDOT)
V = INTGRL(0.0,VDOT)
W = INTGRL(0.0,WDOT)
P = INTGRL(0.0,PDOT)
Q = INTGRL(0.0,QDOT)
R = INTGRL(0.0,RDOT)
XPOS = INTGRL(0.0,XDOT)
YPOS = INTGRL(0.0,YDOT)
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ZPOS INTGRL(0.0,ZDOT)
PHI =INTGRL(O.0,PHIDOT)

THETA = INTGRL(0.0,THETAD)
PSI = INTGRL(0.0,PSIDOT)

PHIANG = PHI/0.0174532925
THEANG = THETA/0.0174532925
PSIANG = PSI/0.0174532925

DEPTH=-ZPOS
PITCH=THEANG
BOWANG= (DB/. 01745)
STNANG=(DS/.01745)
INTGRD = (U*U+V*V+W*W+P*P+Q*Q+R*R+XPOS*XPOS+YPOS* ...

YPOS+(ZPOS-ORDDEP) *(ZPOS-ORDDEP) +PHI*PHI+...
THETA*THETA+PSI*PSI) + (DS*DS+DB*DB)

OBJ1 INTGRL(0.,(0.5)*INTGRD)
OBJ OBJ1

.1' DYNAMIC
.1 ~ RN=TIME/ (FINTIM/lO. -DELT/10000.)

O=INT(RN) +1
IF(cX.EQ.11) 0=10

* ADDITIONALLY THE PLANES SHOULD BE AT EQUILIBRIUM SO THE
* VEHICLE WILL PROCEED AT THIS NEW DEPTH WITHIN SOME

* TOLERANCE

DS=DX (0)
DB=DX (10+0)
IF(O.GE.10) DS=0.
IF(O.GE.10) DB=0.

* DR=DX(20+O)
* RPM=DX(30+O)

* CONSTRAINTS FOR A DIVE

*ORDERED DEPTH = ORDDEP
GW(1) = (ZPOS-ORDDEP)/5.
GW(2) = (ORDDEP-ZPOS)/5.

*AUV'S FINAL STATE MUST BE LEVEL FLIGHT AS FOLLOWS
GW(3) = THETA/5.
GW(4) = -THETA/5.

* AVOIDING THE OBSTACLE

IF(TIME.GE. 0. .AND.TIME. LE.XOBS/U) THEN
TIMEl = XOBS/U
QN=TIME/ (TIMEl/l0.-DELT/10000.)
D = I N T ( Q N + +1
DIST(D)=SQRT( (XPOS-XOBS)*(XPOS-XOBS) +(ZPOS-
ZOBS)*(ZPOS-ZOBS)) GW(4+D) =(1.-DIST(D))
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ELSE
ENDIF
NDX=XPOS/17.425
NDZ=-ZPOS/17.425
NDT=TIME*6./17.425

TERMINAL

IF(INFO.EQ.0) THEN
DO 9000 D=l,11
WRITE(*,9999) DIST(D)

9999 FORMAT(lX,E15.4)

9000 CONTINUE
ELSE
ENDIF
IF(INFO.EQ.0) CALL ENDJOB
CALL RERUN

END
STOP

NOTE: The coefficients must be supplied for the particular
vehicle being studied.
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